skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Meire, Lorenz"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Seasonal phytoplankton blooms in Greenland’s coastal waters form the base of marine food webs and contribute to oceanic carbon uptake. In Qeqertarsuup Tunua, West Greenland, a secondary summertime bloom follows the Arctic spring bloom, enhancing annual primary productivity. Emerging evidence links this summer bloom to subglacial discharge from Sermeq Kujalleq, the most active glacier on the Greenland Ice Sheet. This discharge drives localized upwelling that may alleviate nutrient limitation in surface waters, yet this mechanism remains poorly quantified. Here, we employ a high-resolution biogeochemical model nested within a global state estimate to assess how discharge-driven upwelling influences primary productivity and carbon fluxes. We find that upwelling increases summer productivity by 15–40% in Qeqertarsuup Tunua, yet annual carbon dioxide uptake rises by only  ~3% due to reduced solubility in plume-upwelled waters. These findings suggest that intensifying ice sheet melt may alter Greenland’s coastal productivity and carbon cycling under future climate scenarios. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  2. Blasco, Julian (Ed.)
    Albeit remote, Arctic benthic ecosystems are impacted by fisheries and climate change. Yet, anthropogenic impacts are poorly understood, as benthic ecosystems and their drivers have not been mapped over large areas. We disentangle spatial patterns and drivers of benthic epifauna (animals living on the seabed surface) in West Greenland, by integrating an extensive beam-trawl dataset (326 stations, 59–75°N, 30–1400 m water depth) with environmental data. We find high variability at different spatial scales: (1) Epifauna biomass decreases with increasing latitude, sea-ice cover and water depth, related to food limitation. (2) In Greenland, the Labrador Sea in the south shows higher epifauna taxon richness compared to Baffin Bay in the north. Τhe interjacent Davis Strait forms a permeable boundary for epifauna dispersal and a mixing zone for Arctic and Atlantic taxa, featuring regional biodiversity hotspots. (3) The Labrador Sea and Davis Strait provide suitable habitats for filter-feeding epifauna communities of high biomass e.g., sponges on the steep continental slope and sea cucumbers on shallow banks. In Baffin Bay, the deeper continental shelf, more gentle continental slope, lower current speed and lower phytoplankton biomass promote low-biomass epifauna communities, predominated by sea stars, anemones, or shrimp. (4) Bottom trawling reduces epifauna biomass and taxon richness throughout the study area, where sessile filter feeders are particularly vulnerable. Climate change with diminished sea ice cover in Baffin Bay may amplify food availability to epifauna, thereby increasing their biomass. While more species might expand northward due to the general permeability of Davis Strait, an extensive colonization of Baffin Bay by high-biomass filter-feeding epifauna remains unlikely, given the lack of suitable habitats. The pronounced vulnerability of diverse and biomass-rich epifauna communities to bottom trawling emphasizes the necessity for an informed and sustainable ecosystem-based management in the face of rapid climate change 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  3. Abstract. Ice calved from the Antarctic and Greenland ice sheets or tidewater glaciers ultimately melts in the ocean, contributing to sea-level rise and potentially affecting marine biogeochemistry. Icebergs have been described as ocean micronutrient fertilizing agents and biological hotspots due to their potential roles as platforms for marine mammals and birds. Icebergs may be especially important fertilizing agents in the Southern Ocean, where low availability of the micronutrients iron and manganese extensively limits marine primary production. Whilst icebergs have long been described as a source of iron to the ocean, their nutrient load is poorly constrained and it is unclear if there are regional differences. Here we show that 589 ice fragments collected from calved ice in contrasting regions spanning the Antarctic Peninsula; Greenland; and smaller tidewater systems in Svalbard, Patagonia, and Iceland have similar (micro)nutrient concentrations with limited or no significant differences between regions. Icebergs are a minor or negligible source of macronutrients to the ocean with low concentrations of NOx- (NO3-+NO2-; median of 0.51 µM), PO43- (median of 0.04 µM), and dissolved Si (dSi; median of 0.02 µM). In contrast, icebergs deliver elevated concentrations of dissolved Fe (dFe; median of 12 nM) and Mn (dMn; median of 2.6 nM). The sediment load for Antarctic ice (median of 9 mg L−1, n=144) was low compared to prior reported values for the Arctic (up to 200 g L−1). Total dissolvable Fe and Mn retained a strong relationship with the sediment load (both R2=0.43, p<0.001), whereas weaker relationships were observed for dFe (R2=0.30, p<0.001), dMn (R2=0.20, p<0.001), and dSi (R2=0.29, p<0.001). A strong correlation between total dissolvable Fe and Mn (R2=0.95, p<0.001) and a total dissolvable Mn:Fe ratio of 0.024 suggested a lithogenic origin for the majority of sediment present in ice. Dissolved Mn was present at higher dMn:dFe ratios, with fluxes from melting ice roughly equivalent to 30 % of the corresponding dFe flux. Our results suggest that NOx- and PO43- concentrations measured in calved icebergs originate from the ice matrix. Conversely, high Fe and Mn, as well as occasionally high dSi concentrations, are associated with englacial sediment, which experiences limited biogeochemical processing prior to release into the ocean. 
    more » « less
  4. Greenland’s coastal margins are influenced by the confluence of Arctic and Atlantic waters, sea ice, icebergs, and meltwater from the ice sheet. Hundreds of spectacular glacial fjords cut through the coastline and support thriving marine ecosystems and, in some places, adjacent Greenlandic communities. Rising air and ocean temperatures, as well as glacier and sea-ice retreat, are impacting the conditions that support these systems. Projecting how these regions and their communities will evolve requires understanding both the large-scale climate variability and the regional-scale web of physical, biological, and social interactions. Here, we describe pan-Greenland physical, biological, and social settings and show how they are shaped by the ocean, the atmosphere, and the ice sheet. Next, we focus on two communities, Qaanaaq in Northwest Greenland, exposed to Arctic variability, and Ammassalik in Southeast Greenland, exposed to Atlantic variability. We show that while their climates today are similar to those of the warm 1930s­–1940s, temperatures are projected to soon exceed those of the last 100 years at both locations. Existing biological records, including fisheries, provide some insight on ecosystem variability, but they are too short to discern robust patterns. To determine how these systems will evolve in the future requires an improved understanding of the linkages and external factors shaping the ecosystem and community response. This interdisciplinary study exemplifies a first step in a systems approach to investigating the evolution of Greenland’s coastal margins. 
    more » « less
  5. Abstract The Greenland Ice Sheet is currently not accounted for in Arctic mercury budgets, despite large and increasing annual runoff to the ocean and the socio-economic concerns of high mercury levels in Arctic organisms. Here we present concentrations of mercury in meltwaters from three glacial catchments on the southwestern margin of the Greenland Ice Sheet and evaluate the export of mercury to downstream fjords based on samples collected during summer ablation seasons. We show that concentrations of dissolved mercury are among the highest recorded in natural waters and mercury yields from these glacial catchments (521–3,300 mmol km −2 year −1 ) are two orders of magnitude higher than from Arctic rivers (4–20 mmol km −2 year −1 ). Fluxes of dissolved mercury from the southwestern region of Greenland are estimated to be globally significant (15.4–212 kmol year −1 ), accounting for about 10% of the estimated global riverine flux, and include export of bioaccumulating methylmercury (0.31–1.97 kmol year −1 ). High dissolved mercury concentrations (~20 pM inorganic mercury and ~2 pM methylmercury) were found to persist across salinity gradients of fjords. Mean particulate mercury concentrations were among the highest recorded in the literature (~51,000 pM), and dissolved mercury concentrations in runoff exceed reported surface snow and ice values. These results suggest a geological source of mercury at the ice sheet bed. The high concentrations of mercury and its large export to the downstream fjords have important implications for Arctic ecosystems, highlighting an urgent need to better understand mercury dynamics in ice sheet runoff under global warming. 
    more » « less